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1 Introduction and Contextual-
ization

Our project is based off of an autonomous racecar cre-
ated by AMZ, the Formula SAE project team from
ETH Zurich, as seen in this video. This application
was extremely interesting to us as given that we are
both part of Olin’s Formula SAE team, and given the
increasing relevancy of autonomous vehicles within the
automotive industry. For our project, we wished to
learn more about the analysis that went into develop-
ing the autonomy of recognizing an unknown course
and self-traversal, also known as SLAM or Simultane-
ous Localization And Mapping. We hoped to achieve
a model of the autonomous racecar using a NEATO
that would be able to traverse an unknown course au-
tonomously and use the map that it created from its
initial pass for subsequent laps.

In our project, we used a NEATO vacuum cleaner
robot, which comes prefitted with a LIDAR sensor, as
well as wheel encoders to help with the localization
of the robot in a global coordinate frame. The robot
is placed in an unknown location, and must navigate
and make a map of a “race track” defined by a series of
cones. Here is a short video demonstrating a testing
setup, as well as the output of the control software
that was written.

2 Mathematical Background

This section will outline the concepts behind the math-
ematical tools used in our project.

2.1 Transformation Matrices and Ref-
erence Frames

Transformation matrices are an integral part of dealing
with data in multiple reference frames. This project
involves measuring points in a moving local reference
frame and expressing/storing them in a global, inertial
reference frame. As such, transformation matrices are
an integral part of this project and is the basis upon
which everything else is built.

When multiplying a vector or a set of vectors by
a matrix, it can be thought of as changing the space
that said vectors exist in. For a given matrix A:

A =

[
ix, jx
iy, jy

]
Multiplying any 2D column vector v with the ma-

trix A, ends up transforming î component to land on

the coordinate

[
ix
iy

]
and ĵ component to land on the

coordinate

[
jx
jy

]
. By changing the building blocks of

how a vector is expressed, it is possible to transform
where the vector lies. Rotating a 2D column vector by
θ degrees in the counter-clockwise can be accomplished
by the following matrix:

R =

[
cos θ,− sin θ
sin θ, cos θ

]
The translation of a vector can be expressed as a

matrix product with the introduction of a third dimen-
sion. For a matrix w with points x in the î direction
and y in the ĵ, a third k̂ dimension needs to be added
with a value of 1. When multiplied by a translation
matrix B, the third dimensional component will be
scaled such that it has the appropriate î and ĵ compo-
nents, so as to “push” the original vector w.

w =

xy
1

B =

1, 0, x′

0, 1, y′

0, 0, 1


Bw =

x+ x′

y + y′

1


The translation of a vector can also be expressed

as a matrix sum. This process is a lot simpler than
the one previously examined, as it does not require
the addition of a third dimension.

w =

[
x
y

]
B =

[
x′

y′

]

w + B =

[
x+ x′

y + y′

]

2.2 Singular Value Decomposition

Singular Value Decomposition (SVD) is an important
tool that can be used in order to find important qual-
ities of any matrix. In this project, it is a tool that is
used in the Iterative Closest Point method, which is
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detailed in Section 2.4. SVD expresses a matrix S as
the product of three special matrices, such that:

S = UΣVT

S can be any matrix, so it very well can both stretch/s-
cale, as well as rotate any input matrix given to oper-
ate on. Singular Value Decomposition decomposes a
given matrix S by expressing the entire transformation
as a three step process: a rotation, a scaling, and then
finally another rotation. This means that U and V are
rotation matrices, and thus by definition, orthogonal
matrices. This also means that Σ is a diagonal matrix,
whose entries are called “Singular Values”.

Given that the transpose of an orthogonal matrix is
equal to its inverse, and the definition of eigenvectors

Av = λv

It is simple to prove that the singular values are the
square roots of the eigenvalues of the matrix STS.

S = UΣVT(1)

STS = (UΣVT )T (UΣVT )(2)

= VΣTUTUΣVT(3)

= VΣT ΣVT(4)

STSV = VΣT(5)

It is important to note that the simplification made
in (3) can be made because by definition as U is an
orthogonal matrix, which means that

UT = U−1

It is also important to note that because Σ is a di-
agonal matrix, the expression ΣT Σ is equivalent to
squaring the entire matrix element-wise, thus squar-
ing the Singular values held within the diagonal of Σ.
The main conclusion that needs to be drawn from all
of this is that V contains a set of orthogonal eigen-
vectors corresponding to STS, and ΣT Σ is a diagonal
matrix containing the eigenvalues (or the squared sin-
gular values) corresponding to STS. A similar proof
can be done to show that U contains a set of orthog-
onal eigenvectors corresponding to SST .

Using this relationship of eigenvectors and eigen-
values is important, as it is one way that the SVD of
a matrix can be calculated- First by finding STS and
SST , then finding the corresponding eigenvalues and
eigenvectors for each, and finally using those values to
construct the matrices U, Σ, and VT

2.3 Bayesian Correspondence Detection

Bayesian statistics is based upon updating current be-
liefs with new data. It provides a series of useful math-
ematical tools for dealing with formalized uncertainty,
and ultimately reducing it. In our project, we use
a form of Bayes Theorem to deal with uncertainty

in measurement, and detect correspondence between
newly scanned points and previously seen points. For-
mally, Bayes theorem is:

Pr(H |D) ∝ Pr(D |H) Pr(H)

Which in plain language reads as, “The probability
of hypothesis H, given data D, is proportional to the
probability of D, given H, multiplied by the initial
probability of H”. Qualitatively, this equation is tak-
ing the initial probability of H, Pr(H), and updating
it according to the data D that is gained. This theo-
rem as it is stated above is only really useful for test-
ing a discrete set of hypotheses. To generalize over a
continuous spectrum of infinite hypothesis, probability
densities are required. Here forward, probabilities will
be represented by Pr(), and probability densities will
be represented by p(). The formal definition of Bayes
theorem for probability density is as follows:

p(H |D) ∝ Pr(D |H) p(H)

A probability density is closely related to proba-
bility, but the two quantities are not equivalent. A
probability density is a continuous function that maps
out the relative likelihood, and not the probability, for
a continuous set of hypotheses. In order to obtain an
actual probability from a probability density function,
the sum of probability densities needs to be summed
up over an interval of hypotheses. The resulting sum
is the probability of not one hypothesis, but the range
of hypotheses that was summed. The mathematical
formalization of this is as follows:

Pr(Ha ≤ H ≤ Hb) =

∫ a

b

Pr(D |H) p(H)dH

In plain language, it reads “The probability that
the so called ‘True’ hypothesis H is within the inter-
val of hypotheses Ha to Hb is equal to the integral
of the updated probability density function evaluated
from b to a”. If the interval between a and b repre-
sents the set of all possible hypotheses, the probability
density function will, and must, evaluate to one when
integrated over this interval. This is consistent with
intuition: the probability that the ‘True’ hypothesis
lies within the the set of all possible hypotheses is one.

It is important to note that it is impossible to find
the probability of a singular hypothesis, because given
a system with any non-zero amount of uncertainty, the
probability that any one hypothesis out of a continuous
set of hypotheses is correct is zero.

2.4 Iterative Closest Point (ICP)

Given two sets of corresponding points expressed in
different coordinate frames, the Iterative Closest Point
algorithm is used to find a set of matrix transforma-
tions that can be applied to one of the coordinate
frames as to match the corresponding points in a com-
mon frame. It can be thought of as an optimization
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problem whereby the mean squared error (in this case,
euclidean distance) between corresponding points in a
set of points is minimized by applying one rotation
and one translation. Given perfect correspondence,
this optimization problem can be solved in closed form.
However, given some amount of noise between corre-
sponding points, this algorithm can, and should be ap-
plied multiple times to reach an optimized state, hence
the “Iterative” part of the name. This algorithm is
used in the project to translate points from the local
to the global frame in a way that minimizes error.

Figure 1: ICP transforms corresponding points such
that they match as best as possible.

Qualitatively, the algorithm works by first express-
ing each dataset with respect to the average point
position of said dataset. This is useful, as it effec-
tively gets rid of any translation difference between the
datasets and reduces the problem to involving purely
rotation. Next, the algorithm solves for the rotation
matrix that best aligns the points by looking at the
singular value decomposition (SVD) of the covariance
matrix between the two points. This operation is use-
ful, as the covariance matrix can be thought of a trans-
formation that transforms one set of points and the
SVD can be used to express this transformation as a
series of transformations (rotation, scaling, and then
rotation again).

Now that the groundwork has been laid out, the
specifics of the algorithm will be explained. Assuming
a set of 2D points p expressed in the global coordinate
system, and a set of corresponding points q expressed
in a different coordinate system, such that:

p =

[
xp1, xp2 . . . xpi . . . xpn
yp1, yp2 . . . ypi . . . ypn

]
q =

[
xq1, xq2 . . . xqi . . . xqn
yq1, yq2 . . . yqi . . . yqn

]
We wish to find a rotation matrix R and translation
vector T, such that:

(6) p = Rq + T

It is likely that there is not perfect correspondence
between points, and if this is the case, it is impossible
to line up the two data sets perfectly. As such, (6) is
re-framed as an optimization problem, like so:

(7) arg min
R,T

n∑
i=1

‖Rq + T− p‖2

This expression is essentially minimizing the unnor-
malized mean square error (in other words, the total
squared error) between the set of points p and the set
of points q after applying the transformations R and
T.

Finding an expression for T is rather straightfor-
ward. Assuming that R is known and fixed, that is to
say, the datasets p and q share a common orientation,
the optimal translation is simply one that matches the
centroids (or average point location) of the datasets.
This can be formally proven by assuming R is con-
stant, and setting the derivative of (7) with respect to
T to zero in order to solve for the local (and in this
case, global) minimum. The final expression for T is:

T = p̄−Rq̄

Where:

p̄ =

[
xp1 − µpx, xp2 − µpx . . . xpn − µpx

yp1 − µpy, yp2 − µpy . . . ypn − µpy

]
q̄ =

[
xq1 − µqx, xq2 − µqx . . . xqn − µqx

yq1 − µqy, yq2 − µqy . . . yqn − µqy

]
Where µ is the average x or y position across all points
in a dataset.

Calculating R will continue to use the mean-centered
datasets p̄ and q̄. This is due to the fact that regard-
less of the datasets’ positions and orientations relative
to each other, the distance between points within a
dataset, and the mean point of that dataset should
be more or less consistent across corresponding points
from the other dataset. We wish to minimize the error
with respect to R.

(8) arg min
R

n∑
i=1

‖p̄−Rq̄‖2

As shown in [1], with sufficient algebraic manipu-
lation, (9) can be derived from (8).

(9) arg max
R

Tr(p̄TRq̄)

Using a useful property of the trace:

(10) Tr(AB) = Tr(BA)

for appropriately sized A and B, (9) can be rewritten
as so:

arg max
R

Tr((p̄T )(Rq̄)) = arg max
R

Tr(Rq̄p̄T )(11)
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The product of q̄ and p̄T is somewhat equivalent to an
unnormalized covariance matrix–two identically sized
sets of data that are mean centered are being compared
in an element-wise fashion. In order to solve for R, it
is necessary to find the SVD for q̄p̄T

q̄p̄T = S = UΣVT

such that (11) becomes

arg max
R

Tr(RUΣVT )

Using the identity described in (10) the following
is obtained

(12) arg max
R

Tr(ΣVTRU)

This is useful because U, Σ, and VT are all orthog-
onal. Because R is a rotation matrix, it is also orthog-
onal. Further still, U, VT , and R are orthonormal, as
they are purely rotation matrices. Because the prod-
uct of orthonormal matrices is another orthonormal
matrix, it is known that VTRU is also orthonormal.
The identity matrix is the orthonormal matrix that
will maximize the value of the trace, as the only non-
zero values are on the diagonal. With this in mind, it
is now easy to solve for R,

VTRU = I

V(VTRU)UT = VUT

R = VUT

3 Quantitative Calculation

All of the mathematical concepts laid out in the previ-
ous section hold importance to the project as they are
integral to performing SLAM (Simultaneous Localiza-
tion and Mapping), which is the challenge of construct-
ing and updating a map of an unknown environment
while keeping track of the agent’s position within the
environment. In this project, the agent is a NEATO
robotic vacuum cleaner equipped with a LIDAR scan-
ner. For reference, the LIDAR returns a set of 360
radially even polar coordinates relative to the center
of the LIDAR unit.

3.1 Correspondence

The Iterative Closest Point algorithm was employed to
do a finer, and more accurate correction between the
points from a new scan and the set of known points in
the global frame. For this algorithm to work however,
it needs to be fed points that are strictly correspon-
dent. Therefore, potential cones that are detected in a
new scan need to identified as either an old cone that
has been seen before, or a brand new cone.

Because correspondence between points needs to
be determined before ICP can work, it is very helpful
to have a rough idea of where points from a new scan
lie in the global frame. This is the reason that the new
scan points were first initially transformed based upon
known estimated position information. Transforming
the points based on a position estimate derived from
wheel velocities and time may not be good enough for
multiple scans in a row, but for one scan, it will get
the new scan points sufficiently close to their actual
positions in the global frame, which will help with de-
termining correspondence.

It is important to note that even though a small
amount of dead reckoning based off of motor velocities
was used, error should not accumulate over time. This
is due to the fact that the final determination of the
position of any new point in the global frame is handled
by ICP on LIDAR points.

Initially, a very simple method for detecting corre-
spondence was used. After transforming the new scan
points using encoder information, each new scan point
was paired with the closest known/visited point. If the
distance d between two points was within an experi-
mentally determined range of the mean distance µ be-
tween unique points (d < 0.4µ), the point pair was la-
beled as corresponding. If d was outside of this range,
the point was labeled as a new point. Once rough
correspondence was determined, corresponding points
were selected and fed in the ICP algorithm. All points
within the new scan (both new points and points that
corresponded to old ones) where then transformed based
on the results of ICP, and then added to the global map
of points.

Because determining correspondence is a very im-
portant part of being able to perform SLAM, a method
using Bayesian statistics was developed and employed
in order to determine correspondence in a mathemat-
ically formal way. Given the data r, an (x,y) point
from the LIDAR, two probabilities needed to be de-
termined: the probability of the new LIDAR data cor-
responding to a old point (Hold) and the probability
of the new LIDAR data corresponding to a new point
(Hnew). Formally:

Pr(Hnew | r) ∝ Pr(r |Hnew) Pr(Hnew)

Pr(Hold | r) ∝ Pr(r |Hold) Pr(Hold)

Pr(Hnew |r) and Pr(Hold |r) are mutually exclusive
and completely exhaustive–A given data point r can
either be a new cone, or it can be an old cone, assum-
ing that there are no points that are falsely labeled as
cones. Likewise, Pr(Hnew) and Pr(Hold) are also mu-
tually exclusive and completely exhaustive. this gives
a useful property, as:

Pr(Hnew) = 1− Pr(Hold)(13)

Pr(Hnew | r) = 1− Pr(Hold | r)(14)
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Figure 2: The curve models the likelihood that a given
point is a new point, given the relative distance (in
terms of the average distance) to a given known point.

Staring with Pr(Hold) and Pr(Hnew) is easy. They
are roughly 0.75 and 0.25, respectively. In a typi-
cal scan, there are usually four points visible to the
NEATO, and if the distance between subsequent scans
is roughly the distance between cones, it is a reason-
able approximation of the actual probability.

Pr(r|Hold) and Pr(r|Hnew) are a bit harder. These
probabilities require an estimation of the probability
of a cone being in any location given it is either a new
cone, or an old one. This is where probability densities
are useful, as they allow for the testing for an infinite
continuum of hypotheses.

Pr(r |Hnew) =

∫ rf

ro

p(r |Hnew)dr

where ro and rf represent the region that the point is
expected to be in, which is essentially the uncertainty
in the measurement. The set of all possible r’s repre-
sent a probability density surface, which would contain
the relative likelihood, or probability density, of a new
cone being found for all points in 2D space.

A probability density function was chosen to repre-
sent the likelihood of new cones given knowledge of ex-
isting cones. The following base function, whose shape
can be seen in Figure 2, was chosen for new cones:

er−A

e8(r−A) + 1

This curve qualitatively meets the expectations for
the probability of a new cone around a given cone.
There is a rather low probability very close to the orig-
inal cone, a peak at the mean cone distance, and a
gradual trail-off. This is the reason behind the con-
stant 8. It effectively shapes the graph to have a more
desirable shape. A is a constant that is the center of
a cone. Its purpose is to center the function correctly
around said cone. To get the probability density for

Figure 3: The curve models the likelihood that a given
point is a point that has been seen before, given the
distance away from a given point.

any 2D point in space, given all of the known cones,
the following is used

p(r) =

n∑
i=1

er−Ai

e8(r−Ai) + 1

In this case, Ai is the coordinate of the ith known
cone. It effectively shifts the function to be centered
around each cone in the known set of cones. Effec-
tively, this creates a 3D surface, where each x and
y coordinate has some associated z value that repre-
sents the probability density or relative likelihood of a
new cone lying at that coordinate. A similar surface
can be made to represent the relative likelihood that a
point corresponds to an old point by simply defining a
new probability density function. The following form,
whose shape can be seen in Figure 3, was chosen:

e
−(x−A)2

C

Where A is the position of a known cone, and C is a
constant that represents the standard deviation or ef-
fective uncertainty in the measurement. This function
was chosen as it also qualitatively meets the expecta-
tions for the probability of an old cone around a given
known cone. The closer a point is to an known cone,
the more likely it is to actually be that known cone.

With these functions, it is possible to find quanti-
ties that are proportional to the posterior probabilities
Pr(Hnew | r) and Pr(Hold | r), which matter most. In
order to obtain the complete and normalized posterior
probabilities, the property in (14) can be leveraged to
normalize each probability on the same scale from 0
to 1.

For a given position of the NEATO, detailed in Fig-
ure 4, probability density surfaces can be generated. In
this case, the NEATO was able to successfully detect
and label three out of the four cones in its proximity,
missing the cone that it is closest to, cone number 3.
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Based off of this, it generated probability density sur-
faces in order to classify detected cones, as shown in
Figures 5 and 6.

Figure 4: The physical setup of a NEATO taking a
test scan. In the scan, it labels three out of the four
cones correctly, missing the cone directly next to the
NEATO

Figure 5: The contours associated with the relative
likelihood of a new cone. The highest probabiliy area is
right where the missing cone should be–in between the
2nd and 4th cone.

Figure 6: The contours associated with the relative
likelihood of an old cone. The highest probability areas
are right on top of the known positions of cones

Any new scanned cone center would be measured
against each probability density surface, integrated over
a small area to obtain probability, and normalized
based on the prior and total probabilities. If the proba-
bility that the newly scanned point corresponded with
an old point was greater than 50 percent, it was la-
beled as an old point, and if not, the newly scanned
point was labeled as a new, previously unseen point.

3.2 Iterative Closest Point

Iterative Closest Point (ICP) was a really important
tool in the scheme of this project. Once correspon-
dence was detected between newly scanned points and
previously visited points, ICP could be performed on
the set of corresponding points to generate a trans-
formation that would best align the new data with
the preexisting data. Actually implementing the al-
gorithm is straightforward, and as such, went with-
out much of a problem. That being said, through a
lot of testing, it was determined that ICP could be
used for more than just a final reconciliation between
the roughly transformed points and the global points.
For some cases, the LIDAR cone centers that were re-
turned from the cluster detection algorithm were too
far away from existing cones to trigger a correspon-
dence flag, even if the points actually did correspond.
This would result in two points being very close to each
other after ICP was performed on correctly identified
corresponding points. In order to mitigate this prob-
lem, it was decided to perform the operation of cor-
respondence detection and ICP multiple times. This
would allow for several refinement transformations to
be made, moving the points from the new scan ever
closer to their global frame counter-parts in the hopes
of discovering new correspondences, which would in-
crease the robustness of the global map.

The workflow between ICP and the Bayesian Cor-
respondence Detector was as follows:

1. Detect correspondence between list of known points
and list of points from the new scan

2. Use ICP on corresponding points to get a trans-
formation

3. Transform the all points from the new scan ac-
cording to the transformation obtained from ICP

4. Repeat from step 1

In the final implementation of the code, it was de-
termined that three iterations of correspondence de-
tection was sufficient in capturing any stray correspon-
dences that were initially missed.

4 Implementation

Apart from ICP and Bayesian Correspondence, there
were many other tools developed in the implementa-
tion of the project. Each of these additional tools had
varying levels of mathematical intensity, but were all
consistent in that they were less mathematically in-
volved than the main two analytic methods. This sec-
tion seeks to provide detail and light mathematical ex-
planation behind these additional tools, as well as give
context to the tool in the larger view of the project.
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4.1 Transformation Matrices and Ref-
erence Frames

One main usage of transformation matrices was to
move the scanned points from the LIDAR sensor’s ref-
erence frame to the NEATO’s. As the origin for the
NEATO’s reference frame was defined as the center of
its wheelbase and the LIDAR was mounted towards
the rear of the NEATO, there was a difference be-
tween their origins as seen in Figure 7. A constant
translation was applied to the scanned data to rectify
this misalignment to represent the data points with
respect to the NEATO’s perspective. After this trans-
lation was applied to correct the data, the data could
then be processed with ICP to be transferred into the
global frame.

Figure 7: The NEATO’s LIDAR is mounted 0.1 me-
ters behind the center of the NEATO’s wheelbase. A
translation of 0.1 meters in the x-direction is used to
align the data scans from the LIDAR’s reference frame
to the NEATO’s reference frame.

4.2 Cluster Detection

Once the data points were corrected into the NEATO’s
reference frame, post processing in the form of clus-
ter detection was used to extract the position of the
path-defining cones. Cluster detection is the process
of labeling subsets of data within a larger group of
data. This is a pretty large and common problem in
various different fields, and as such, can be looked at
and framed in many different ways. Performing this
step greatly reduces processing time and complexity,
and as such, is highly desirable.

Because the points of interest are received origi-
nally from the LIDAR, they are already in an order
of ascending θ, which makes cluster detection really

simple. Detecting clusters is now as easy as looking at
consecutive polar coordinates (ie: steadily increasing
θ) and the difference in radius between them. Given
a set of n points p, consisting of row vectors θ and r
containing angle and radius values for corresponding
points:

p =

[
θ
r

]
θ = [θ1, θ2, θ3 . . . θn]

r = [r1, r2, r3 . . . rn]

µ, the average radial difference (ri− ri−1) between
consecutive points can be computed by the following:

µ =

n∑
i=2

ri − ri−1
n− 1

The standard deviation σ of the radial difference
between consecutive points can be computed by the
following:

σ =

n∑
i=2

ri − ri−1 − µ
n

The standard deviation is a very useful metric to
look at, as it shows how much variance is present
within the data. By scaling σ by an experimentally
determined constant C (in our case 0.15), it is possi-
ble to easily search for outliers in the radial difference
between consecutive points. If the radial distance be-
tween consecutive points is greater than Cσ, then the
points can be flagged as the beginning and end of a
new group.

Additional characterization needed to be applied
to the clusters to identify individual clusters as cones.
A circular interpolation method was added to increase
the accuracy and refine the cone detection. The circu-
lar interpolation method analyzed and filtered objects
in the environment based on their expressed curvature.
The method chose three evenly spaced points within
each cluster and used the perpendicular bisectors of
the chords connecting the points to identify the cen-
ter of the circle. The average distance between the
calculated distance and the points in the cluster was
evaluated. A threshold of 0.4 and 2 times the expected
radius of the cones was set and if the average exper-
imental radius of a cluster was within the threshold,
the cluster was labeled as a cone and the center was
used to define the position of the recognized cone.

Figures 8, 9, 10, 11 outline the different levels of fil-
tration that the cluster detection algorithm performs.
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Figure 8: This is Raw LIDAR Data, which is quite
messy and includes a lot of noise extraneous to the
system of that is being measured.

Figure 9: Close points within 1.5 meters of the
NEATO, here in red, are flagged for further analysis.
Anything further away is deemed to be unsuitable for
drawing any valuable conclusions.

Figure 10: Individual clusters are marked out based
on the standard of deviation in radius between LIDAR
points. Only clusters of 3 or more points are flagged
and stored from this stage to the next.

Figure 11: From the clusters, individual cones are
picked out based on curvature. Only the clusters that
are close in shape to the cones get flagged and passed
forward for Correspondence testing and ICP
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4.3 Path Generation and Movement

Having found the positions of the cones from the LI-
DAR scan, the next step was to generate a path for
the NEATO to follow. While it would have been easy
to simply send the NEATO to the position of the cone
closest to it, it was necessary for the course to be pre-
served for future laps and therefore would have been
impractical for the NEATO to have been constantly
running over the cones. With this in mind, it was nec-
essary to implement a method of generating a path
based off of the positions of the guide cones but offset
at a distance to allow the NEATO space to maneuver.
This was achieved by first identifying the cone closest
to the NEATO using simple euclidean distances. The
closest cone was removed from the list of cones and as
the cones were not returned in order, the next cone in
line was found by first sorting the list of cones in or-
der of ascending euclidean distances. From the sorted
list, the dot product of the vector connecting each cone
to the NEATO was calculated with the vector repre-
senting the NEATO’s orientation to find the one that
was closest that was also in a direction similar to the
NEATO’s orientation.

Once the two cones closest in order to the NEATO
were identified, a vector was drawn between them and
a new vector normal to it was drawn originating from
the second cone. This new vector defined the direction
of the offset and the magnitude determined the dis-
tance of the offset. The magnitude of the offset vector
was set to 0.5 meters to allow the NEATO to closely
follow the cones without running into them. A vector
was drawn from the NEATO’s current position to the
new position to determine the path for the NEATO to
achieve the new position.

Figure 12: An example of the offset path generated
based on seen cones from LIDAR scan.

Based on the path vector created, commands were
written to convey this movement to the NEATO. With
a differential drive, it was necessary to define the indi-
vidual velocities of the NEATO’s left and right wheels.
For linear movement, the left and right wheels were

both set to have a velocity of 0.1 m/s while for an-
gular movement, one wheel was set to 0.5 m/s while
the other was set to −0.5 m/s depending on the direc-
tion of the desired turn. As the linear velocity V of a
differential drive is defined as the following:

V =
VL + VR

2

the linear velocity of the NEATO was found to be
0.1 m/s. The angular velocity ω of a differential drive
can be found using the following:

ω =
VL − VR

d

where d is the track width or distance between the left
and right wheels. From this, the angular velocity of the
NEATO was found to be ±4.17 rad/s. Using these set
velocities, the time needed for the movements was cal-
culated by dividing the magnitude of the path vector
by the linear velocity for time moving forward and di-
viding the angle between the NEATO’s orientation and
the path vector (in radians) by the angular velocity for
the time spent turning. The velocities commands were
then sent to the NEATO with the turning being per-
formed first for the respective amounts of time. The
changes in the NEATO’s position and orientation were
saved to perform rough alignment for the next scan.

5 Results and Discussion

For the final deliverable, a SLAM algorithm was de-
veloped to allow the NEATO to traverse an unknown
course while simultaneously making an accurate map
of said course. In developing this algorithm, each of
the different techniques outlined in Sections 2, 3 and 4
was implemented such that each tool worked well with
the others. Despite a large amount of time devoted
into the testing and refinement of the different tools
used in the project, in the end, the NEATO was never
able to fully navigate and map out an extensive course.
In the end, small errors in how the data was parsed and
stored over multiple scans eventually accumulated over
time, and threw the NEATO off. After roughly 13-15
transforms (a cycle consisting of NEATO movement
and a collected scan), the theoretical model of the real
world tended to diverge so much from the real world
that the Bayesian Correspondence detector was unable
to classify corresponding points correctly. On the one
hand, the inability of the NEATO to traverse a full
course is rather unfortunate. On the other hand, the
performance of the NEATO was much better than it
could have ever been simply relying on dead reckoning.
Over the course of 13-15 transforms, the virtual map
of the course generated by the NEATO different from
reality by about 0.2 meters, whereas it is not uncom-
mon for more than 0.2 of error to be introduced after
just two transforms of NEATO when relying simply
on dead reckoning techniques.
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Figure 13 shows the final scan that the NEATO
was able to produce on one of the most successful
runs. In this case, the course it was trying to navigate
was roughly a square whose edge length was about
3.5 meters, and whose corners were slightly rounded.
Red points represent the known locations of cones in
the global frames. Green asterisks are the positions of
cones in the newest scan, corrected only based off of
the velocity and time data sent to the NEATO. Also
included is the probability density surfaces for both old
and new cones associated with the points highlighted
by the larger red points. The surface associated with
the likelihood of an old cone has tight peaks around
each known cone, and the surface associated with the
likelihood of a new cone is much more spread out and
less concentrated around known points.

Figure 13: The final scan that the NEATO was able
to make before failing. In this case, failing was being
unable to match up corresponding points, and being
unable to proceed

The reason behind the inevitable accumulated er-
ror between the virtual model of the course and physi-
cal course is due to how much importance is placed on
points that have been seen before. When transferring
new points into the global frame, new points are al-
ways transformed such that the new points that have
correspondence line up almost perfectly with their cor-
responding point in the global frame. This is placing
much too high of a value on the accuracy of the preex-
isting value. Each point is originally derived from the
LIDAR scan passed through the same cluster detection
algorithm, and as such, given no other information or
data, should carry the same level of uncertainty with
it. By moving only one set of points and keeping the

other basically stationary, it is effectively treating the
unmoving set of known points in the global frame as
much more accurate than the set of new points, which
is just not true.

6 Conclusion

A lot was learned over the course of this project. While
it was not possible to achieve what was originally planned,
a method that is much more robust than dead reckon-
ing was developed to the point where a few more incre-
mental refinements could make it possible to achieve
what was originally planned. Perhaps the greatest
takeaway from all of this is the importance of min-
imizing uncertainty and error wherever possible and
wherever convenient. Over a series of many transfor-
mations, it is very difficult to keep track of the position
of the NEATO while managing the error in position,
so any reduction of uncertainty can and will help. Sev-
eral changes have been identified as possible ways to
reduce uncertainty and thus improve the performance
of the project if there was more time.

6.1 Robust Reconciliation between Known
points and corresponding New points

Every cone center that is derived by performing clus-
ter detection on a LIDAR scan has some degree of
uncertainty associated with it. While this uncertainty
is small, especially compared to the encoder uncer-
tainty, it is nonetheless non-zero. Seeing the same
point across multiple scans will help to reduce this
uncertainty. When updating the positions of cones in
the global frame, there needs to be a way to recon-
cile information previously seen and new information
that recognizes the inherent uncertainty in each of the
data points. A method for accomplishing this has been
devised with the following steps:

1. Detect correspondence between list of known points
and list of points from the new scan

2. Use ICP on corresponding points to get a trans-
formation

3. Transform all points including NEATO position
from the new scan according to the transforma-
tion obtained from ICP

4. Repeat from step 1 until all correspondences are
found

5. Update position of corresponding points to be
the average position of all correspondences ever
found

6. Use ICP on corresponding points from the new
scan and the new averaged corresponding points
to get a transformation

10



7. Transform all points including NEATO position
from the new scan according to the transforma-
tion obtained from ICP

The method outlined above is essentially a crude im-
plementation of a Kalman State Estimator, a piece of
mathematics used to reconcile different measurements,
each with its own uncertainty. This is a method that
was considered for implementation, but was eventually
scrapped due to time concerns.

6.2 Clustering based on Euclidian dis-
tance

When performing cluster detection, the radial distance
between neighboring polar points is evaluated when
calculating the mean and standard deviation in the dis-
tance between two points. This is a pretty reasonable
approximation that appeared to perform well. How-
ever, a more accurate method would be to calculate the
actual Euclidean distance between neighboring points.
This is a simple and somewhat trivial problem to fix,
but is nonetheless a source of error when identifying
points.

6.3 K-Means clustering

An additional clustering algorithm is the K-Means Clus-
tering method. Given a set of points X, a set of k cen-
troids are randomly picked. In each iteration, individ-
ual points are assigned to the centroid that is closest
to it. The average position of the final group is com-
puted, and the corresponding centroid is moved to that
point. Over a few iterations, the algorithm quickly
places each centroid at the average position of discrete
groups. The issue with K-Means Clustering is that k
needs to be known beforehand, which is impractical
because it is impossible to know the number of visible
cones before scanning. Luckily because the algorithm
is quite fast, it can be run over a series of potential k
values, and the one that minimizes the total variation
within each cluster without creating excessively small
groups can be chosen.

The authors of this paper are not at this time sure
whether this method would be strictly better than
what is currently used. However, K-Means Cluster-
ing is a very well known and established clustering
algorithm that is widely used in fields such as ma-
chine learning. This suggests that it can be adapted
to this problem with performance comparable to the
algorithm currently used.

6.4 Encoder-based Odometry

When performing the initial transformation that roughly
transforms points in the NEATO frame to the global
frame, theoretical target distances and angular dis-
placements are used. This assumes that the NEATO
is able to somewhat reasonably accurately carry out

commands sent to it. When the NEATO’s movement
is based completely on velocity and time, this is just
simply not a good assumption to make. As such, it
would be much more accurate translate and rotate the
representation of the NEATO based on numbers spec-
ified by encoder values returned after making a move.
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8 Appendix

All code written and used in our NEATO implemen-
tation can be found on Github.
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https://github.com/jzerez/QEA-Final-Project
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