
Coach’s Notes: Bullwinkle

Kyle “Micky” Emmi, Jonathan “Goldmill” Zerez

November 2018

Figure 1: Block Diagram for Survivor

1 Introduction

Bullwinkle is the lesser known sidekick and counterpart
to the world renown boxer, Rocky. He hails from a small
Indiana farm. Being the youngest of 5 older brothers, he
always had to fight tooth and nail to get his fair share of
the food come supper time. He’s ready to bring home the
gold for his folks back home in the sprint competition of
the Rocky Olympics. Here is his best sprint, and here is
his best attempt at the survivor event.

2 Athlete Demographics

2.1 Individual Transfer Functions

Our block diagram for the survivor event has five different
components in it. It has three controllers, an angle con-
troller, a motor controller, and a position/velocity con-
troller, and two plants, the motor and the rocky itself.
Each subsection below will detail the transfer functions
of each component of the overall system.

2.1.1 Transfer Function for the angle controller

The angle controller is a proportional-integral controller
that takes an angle as an input, and outputs a desired
velocity in meters per second. The transfer function for
this block is represented by G1. Mathematically, G1 is:

(1) G1(s) = Kp +
Ki

s

Where Kp and Ki are user tuned constants that impact
the system’s performance. The incoming error in angle is
multiplied by the Kp term, and the integral of angle error
over time is multiplied by the Ki term. The form of this
transfer function is standard for a simple proportional-
integral controller in S-space. This controller is the sup-
posed “main” controller for the system, and ensures that
the angle of the robot stays as close to vertical as possible.

2.1.2 Transfer Function for the motor controller

The motor controller is a proportional-integral controller
that takes the difference between the desired velocity and
actual velocity as an input, and outputs a PWM signal.
The transfer function for this block is represented by G2.
Mathematically, G2 is:

(2) G2(s) = Jp +
Ji
s

Where Jp and Ji are user tuned constants that impact
the system’s performance. The incoming error in ve-
locity is multiplied by the Jp term, and the integral of
velocity error over time is multiplied by the Ji term.
The form of this transfer function is standard for a sim-
ple proportional-integral controller in S-space. This con-
troller is a more secondary controller in the system that
ensures that the velocity of the robot is as close to what
the output of G1 dictates it to be.

2.1.3 Transfer Function for the motor plant

The motor plant is a model of how the velocity of the
motor varies as a function of input PWM. It takes PWM

1

https://youtu.be/KrbPwAjVmfA
https://youtu.be/ASXXLzDlb0c


as an input, and outputs velocity. The transfer function
for this block is represented by G3. Mathematically, G3

is:

(3) G3(s) =
αβ

s+ α

Where α and β are experimentally determined constants
based on the motor’s performance. To understand how
we got to this function, it will be useful to see its rep-
resentation in the time domain. If we take the inverse
Laplace transform of this transfer function, we find that
its time domain representation is:

(4) g3(t) = αβe−αt

When testing the motors, we found that the velocity re-
sponse to a step in PWM was this in this form, that is,
an exponential that asymptotically approaches a steady
state condition. By testing the step response of the motor
and measuring velocity, we were able to define α and β,
which are related to the time constant of the response,
and the steady state velocity. G3 gives us more accu-
racy when predicting how the robot will respond to PWM
commands, and thus increases stability.

2.1.4 Transfer Function for the position/velocity
controller

The position and velocity controller is a proportional-
integral controller that takes velocity and position of the
robot as an input. The transfer function for this block is
represented by G4. Mathematically, G4 is:

(5) G4 = Dp +
Di

s

Where Dp and Di are user tuned constants that impact
the system’s performance. The incoming error in velocity
is multiplied by the Dp term, and the integral of velocity
error over time (ie displacement) is multiplied by the Di

term. The form of this transfer function is standard for
a simple proportional-integral controller in S-space. This
controller is a more secondary controller in the system
that ensures that the overall velocity and displacement of
the robot

2.1.5 Transfer Function for the position/velocity
controller

The inverted pendulum plant is a simplified model of a in-
verted pendulum with a translating pivot point. It takes
velocity as an input, and outputs an angle.The transfer
function for this block is represented by G5. Mathemati-
cally, G5 is:

(6) G5 =
s

g − ls2

Where l is the heigh of center of mass of the robot, and
g is the gravitational constant. This simplified model is

based on the original equation of motion for a translating
inverted pendulum:

(7) ml2θ′′(t) −mgl sin θ = −mlv′(t) cos θ

Where m is the mass of the entire system. To simplify
the model, we used the small angle approximation where
sin θ = θ and cos θ = 1. These approximations are valid
to make because the robot will always balancing at small
angles around vertical. They simplify the equation to be:

(8) ml2θ′′(t) −mglθ = −mlv′(t)

Which can be taken into the S-domain with the help of
Mathematica

2.2 The Overall Transfer Function

Putting all of these equations together gives us Bullwin-
kle’s overall transfer function. This function is just a few
simple algebra operations away and begins with Equa-
tion 9 below. This is the definition of the error in angle
and is the result of the first circle in the Block Diagram.
The overall transfer function will have θ(s) over θd so
we need to replace ea(s) and x(s). To do this we use
Equations 10 and 11. Solving Equation 10 for ea(s) and
substituting that into Equations9 and 11 leaves us with
x(s) as the only remaining unwanted variable and is eas-
ily removed with Equation 11. This leaves us with only

θ(s) and θd thus solving for θ(s)
θd

gives us our final transfer
function in Equation 12.

ea(s) = θd + x(s) − θ(s)(9)

θ(s) = ea(s) ∗G1 ∗
G2G3

1 +G2G3
∗G5(10)

x(s) = ea(s) ∗G1 ∗
G2G3

1 +G2G3
∗G4(11)

H(s) =
θ(s)

θd
=

1
1+G2G3

G1G2G3G5
− G4

G5
+ 1

(12)

By plugging in the individual transfer functions for G1,
G2, G3, G4, and G5 as detailed earlier into Equation 12,
we were able to produce a theoretical model of how the
system would behave. Placing this system into Mathe-
matica, we found for the poles of the final transfer func-
tion by solving for the zeros of the denominator (in terms
of s). Evaluating poles is useful as they allow one to
quickly determine the end behavior of a system. Poles
with negative real values will tend towards stability, while
poles with positive real values will tend towards instabil-
ity. Poles with zero imaginary components will not oscil-
late, and poles with non-zero imaginary components cor-
respond to oscillatory behavior. By looking at a pole plot,
we were able to quickly evaluate the theoretical behavior
of our system without having to physically test anything.
By choosing controller constants Kp Ki, Jp, Ji, Dp, and
Di that corresponded to poles with exclusively negative
real components, and relatively small imaginary compo-
nents, we were able to start testing with a system that

2



performed well enough to qualitatively tune to perfection
based on physical testing. Figure 2 below is the pole plot
for the entire system using our final controller constants.

3 Athlete Performance Informa-
tion

Below is a table of the different parameters that we used
in the survivor event.

Parameter Value Units

Kp -2.7 m/s
rad

Ki -14 m/s
rad∗t

Jp 500 PWM
m/s

Ji 5000 PWM
m

Dp -0.1 rad
m/s

Di -0.15 rad
m

l 0.09 m

g 9.8 m/s2

α 10 1/s

β 1
400 m

m 0.47 kg

Physical constants (l, α, β, m) were determined ex-
perimentally. Specifically, l and m were determined by
simply measuring the mass of the robot, as well as the
height of the center of mass. α and β were determined
by examining the step response of the motors on Rocky
to a PWM signal, and fitting an exponential curve to the
response using MATLAB’s Cftool. As for the theoret-
ical control constants, they were determined largely by

looking at the Pole Plot generated in Mathematica. Us-
ing Mathematica’s “Manipulate” function, we were able
to dynamically test differing values for control constants
that would produce poles with exclusively negative com-
ponents. We set the range for values to play with based on
the units of each control constant, and the physical con-
straints of our system (ex: max motor velocity). Once we
found a combination of control constants, we would test
it on the physical system. Once we got a controller that
worked relatively well, we tended to qualitatively tune the
constants based on observations of performance.

4 Training Session Description

After developing/discovering the methodology for tuning
control constants as described above, progress was made
very quickly and efficiently. That process allowed us to
be confident that control constants would not only give
us a stable system, but also would respect the physical
constraints of our system before spending time on test-
ing.

In terms of developing the architecture of the entire
system, we followed a process of incremental develop-
ment. We first started with the simplest controller–just
an angle controller, and developed it until it performed
reasonably well. Then, based on observations and sug-
gestions, we would add new controllers and increase the
complexity of the entire control system. After the angle
controller was complete, we integrated the transfer func-
tion of the motor plant, and then the motor controller.
These additions were due to observations that the mo-
tors were unable to achieve requested velocities. After
those blocks were added to the overall transfer function,
we added a position controller to try to ensure that the
robot would try to return to the origin, because the robot
had a tendency to drift away. Finally, we added a velocity
controller in addition to the position controller to ensure
that the velocity of the robot at the origin was as close
to zero as possible. We added this because the velocity
of the robot at the origin would be non-zero, and cause
increasing oscillations about the origin.

Figure 2: Pole diagram of Survivor control scheme

3


	Introduction
	Athlete Demographics
	Individual Transfer Functions
	Transfer Function for the angle controller
	Transfer Function for the motor controller
	Transfer Function for the motor plant
	Transfer Function for the position/velocity controller
	Transfer Function for the position/velocity controller

	The Overall Transfer Function

	Athlete Performance Information
	Training Session Description

